Prediction of arm movement trajectories from ECoG-recordings in humans.

نویسندگان

  • Tobias Pistohl
  • Tonio Ball
  • Andreas Schulze-Bonhage
  • Ad Aertsen
  • Carsten Mehring
چکیده

Electrocorticographic (ECoG) signals have been shown to contain reliable information about the direction of arm movements and can be used for on-line cursor control. These findings indicate that the ECoG is a potential basis for a brain-machine interface (BMI) for application in paralyzed patients. However, previous approaches to ECoG-BMIs were either based on classification of different movement patterns or on a voluntary modulation of spectral features. For a continuous multi-dimensional BMI control, the prediction of complete movement trajectories, as it has already been shown for spike data and local field potentials (LFPs), would be a desirable addition for the ECoG, too. Here, we examined ECoG signals from six subjects with subdurally implanted ECoG-electrodes during continuous two-dimensional arm movements between random target positions. Our results show that continuous trajectories of 2D hand position can be approximately predicted from the ECoG recorded from hand/arm motor cortex. This indicates that ECoG signals, related to body movements, can directly be transferred to equivalent controls of an external effector for continuous BMI control.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconstruction of reaching movement trajectories using electrocorticographic signals in humans

In this study, we used electrocorticographic (ECoG) signals to extract the onset of arm movement as well as the velocity of the hand as a function of time. ECoG recordings were obtained from three individuals while they performed reaching tasks in the left, right and forward directions. The ECoG electrodes were placed over the motor cortex contralateral to the moving arm. Movement onset was det...

متن کامل

Prediction of Three-Dimensional Arm Trajectories Based on ECoG Signals Recorded from Human Sensorimotor Cortex

Brain-machine interface techniques have been applied in a number of studies to control neuromotor prostheses and for neurorehabilitation in the hopes of providing a means to restore lost motor function. Electrocorticography (ECoG) has seen recent use in this regard because it offers a higher spatiotemporal resolution than non-invasive EEG and is less invasive than intracortical microelectrodes....

متن کامل

A New Nonlinear Autoregressive Exogenous (NARX)-Based Intra-Spinal Stimulation Approach to Decode Brain Electrical Activity for Restoration of Leg Movement in Spinally-Injured Rabbits

This study aims at investigation of stimulation by using intra-spinal signals decoded from electrocorticography (ECoG) assessments to restore the movements of the leg in an animal model of spinal cord injury (SCI). The present work comprised of three steps. First, ECoG signals and the associated leg joint changes (hip, knee, and ankle) in sedated healthy rabbits were recorded in different trial...

متن کامل

Decoding natural grasp types from human ECoG

Electrocorticographic (ECoG) signals have been successfully used to provide information about arm movement direction, individual finger movements and even continuous arm movement trajectories. Thus, ECoG has been proposed as a potential control signal for implantable brain-machine interfaces (BMIs) in paralyzed patients. For the neuronal control of a prosthesis with versatile hand/arm functions...

متن کامل

Mapping ECoG channel contributions to trajectory and muscle activity prediction in human sensorimotor cortex

Studies on brain-machine interface techniques have shown that electrocorticography (ECoG) is an effective modality for predicting limb trajectories and muscle activity in humans. Motor control studies have also identified distributions of "extrinsic-like" and "intrinsic-like" neurons in the premotor (PM) and primary motor (M1) cortices. Here, we investigated whether trajectories and muscle acti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neuroscience methods

دوره 167 1  شماره 

صفحات  -

تاریخ انتشار 2008